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Bacterial SNPs in the human gut microbiome 
associate with host BMI

Liron Zahavi    1,2, Amit Lavon    1,2, Lee Reicher1,2,3, Saar Shoer    1,2, 
Anastasia Godneva1,2, Sigal Leviatan    1,2, Michal Rein1,2, Omer Weissbrod4, 
Adina Weinberger1,2 & Eran Segal    1,2 

Genome-wide association studies (GWASs) have provided numerous 
associations between human single-nucleotide polymorphisms (SNPs) and 
health traits. Likewise, metagenome-wide association studies (MWASs) 
between bacterial SNPs and human traits can suggest mechanistic links, but 
very few such studies have been done thus far. In this study, we devised an 
MWAS framework to detect SNPs and associate them with host phenotypes 
systematically. We recruited and obtained gut metagenomic samples from 
a cohort of 7,190 healthy individuals and discovered 1,358 statistically 
significant associations between a bacterial SNP and host body mass index 
(BMI), from which we distilled 40 independent associations. Most of these 
associations were unexplained by diet, medications or physical exercise, 
and 17 replicated in a geographically independent cohort. We uncovered 
BMI-associated SNPs in 27 bacterial species, and 12 of them showed no 
association by standard relative abundance analysis. We revealed a BMI 
association of an SNP in a potentially inflammatory pathway of Bilophila 
wadsworthia as well as of a group of SNPs in a region coding for energy 
metabolism functions in a Faecalibacterium prausnitzii genome. Our results 
demonstrate the importance of considering nucleotide-level diversity in 
microbiome studies and pave the way toward improved understanding 
of interpersonal microbiome differences and their potential health 
implications.

The human gut microbiome is important for host health and is asso-
ciated with a wide array of diseases, including inflammatory bowel 
disease, cardiovascular disease, obesity, diabetes and even cancer1–7. 
However, understanding of the mechanisms underlying these associa-
tions is still limited. The risk for obesity, for example, is suspected to be 
affected by the gut microbiome8, yet no microbiome-based treatment 
to prevent obesity exists.

Studies that associate the microbiome with disease are frequently 
based on a genus-level or species-level taxonomic characterization and 
its correlation with host health conditions. Although useful, this level 

of resolution may not be sufficient for a comprehensive understand-
ing of the interconnections between the gut microbiome and human 
health. More recently, advancements in high-throughput sequencing 
technologies have enabled higher-resolution investigations of the 
human microbiome, which uncovered vast intra-species diversity. 
Subspecies variations, such as strain diversity9, mobile gene composi-
tion10 and copy number variations11,12, were all shown to be associated 
with host traits and lifestyle habits. By examining gene-level differences 
between microbiomes rather than entire species genomes, such stud-
ies provide a finer-resolution view of host–microbiome interactions. 
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reads that could be assigned with the same likelihood to multiple spe-
cies that existed in the sample (Methods).

After the read assignment step, we compared all reads assigned 
to the same genomic position to find the global major allele (that is, 
the most prevalent nucleotide in this position across the cohort) and 
computed the frequency of this allele within each sample covering this 
position—the ‘major allele frequency’. Finally, we filtered all genomic 
positions by their coverage (1,000 samples or more) and variability 
(average major allele frequency ≤ 99%; Methods). We found 12,686,191 
positions that met these criteria, which we marked as SNPs, spread  
across the genomes of 348 of the bacterial species (Extended Data  
Fig. 1). The median number of SNPs detected in a genome was 3,221 SNPs, 
but 56 (16%) of the genomes had over 100,000 such variable positions.

We designed our MWAS framework to separately test each SNP’s 
association with host BMI, or any other trait of interest, following the 
common practice of human GWASs, which aims to discover associa-
tions between SNPs in the human genome and various phenotypes. 
In contrast to human genetics in which a person can have one, two or 
no copies of an allele, the bacterial population in the microbiome can 
have any number of allele copies. Therefore, we modeled each sample’s 
genotype as a continuous number in the range of 0 to 1, representing 
the ‘major allele frequency’—the frequency of the cohorts’ major allele 
out of the sample’s reads that mapped to a specific genomic position. 
For each SNP, we created a linear regression model with the major allele 
frequency as the independent variable and the BMI as the explained 
variable. With these models, we computed the statistical significance 
of the association between each SNP–trait pair, using the P value of 
the SNP estimated in the model. To isolate the SNP’s association with 
the phenotype in question from potentially confounding phenotypes 
(Fig. 1b), we used a common GWAS approach and added covariates for 
other host traits (age and sex; Methods). As an additional precaution 
to avoid mixing within-species and between-species variations, we 
also included the relative abundance of the species as a covariate. To 
account for the large number of hypotheses tested, we corrected all 
P values using the Bonferroni method. We only included participants 
with complete records for age, sex and BMI, resulting in the inclusion 
of 7,056 of the 7,190 participants.

Because the bacterial species colonizing the gut often diversify 
into multiple strains24, we assumed that some SNPs may be correlated 
due to population structure or linkage disequilibrium (LD)25–27. Our 
goal in this work was to find point variations that are independently 
associated with host BMI, and we wanted to avoid inflated results of 
correlated SNPs. To exclude redundant associations, we applied a 
clumping procedure that is common in GWASs as a final step in our 
MWAS analysis. In this clumping procedure, the SNPs associated 
with the phenotype are sorted by the P value of the association. The 
SNP with the smallest P value is selected first, and all SNPs that are 
correlated to it are removed from the results. Then, the SNP with the 
smallest P value of those left is analyzed, and this process continues 
until all SNPs are selected. This procedure results in a filtered list of 
SNPs that are each correlated with the phenotype and uncorrelated 
with each other. We applied this procedure to the results of each spe-
cies separately, choosing a stringent correlation coefficient threshold 
of 0.3 (Methods).

Bacterial SNPs associate with host BMI
To investigate whether individual microbiome SNPs associate with host 
health, we applied our MWAS framework to test the association of each 
of the 12,686,191 bacterial SNPs with host BMI. We discovered 1,358 
bacterial SNPs that are associated with host BMI (Bonferroni-corrected 
P < 0.05; Fig. 2, Extended Data Figs. 2 and 3 and Methods).

In most species in which we found BMI-associated SNPs, there were 
only 1–13 such SNPs (21/27; Fig. 3 and Supplementary Table 1). How-
ever, other species had 49–909 BMI-associated SNPs, which suggests 
that, in some species, there is a strain structure associated with BMI. 

They can point at specific bacterial functions that associate with host 
traits and result in discrete hypotheses regarding the mechanisms 
underlying these interactions.

Although there has been growing interest in subgenomic bac-
terial diversity and its impact on host–microbiome interactions, a 
level of diversity that has received relatively little attention is that of 
single-nucleotide variations. The substitution of one nucleotide in a 
genome can significantly alter organismal functions. Single-nucleotide 
polymorphisms (SNPs) can grant bacteria antibiotic resistance13 or 
the ability to infect a new host species14 and are, thus, often studied in 
pathogens in bacterial genome-wide association studies (GWASs)15. 
Previous studies16–18 showed the prevalence of SNPs in the microbi-
ome, and SNPs in bacteria from fecal samples were shown to have an 
influence on bacterial drug metabolism in vitro and a potential role 
in interpersonal differences in drug response19. However, despite the 
extent of SNP-level diversity in the microbiome and its likely relevance 
for host–microbiome interactions, to our knowledge, no study has thus 
far systematically investigated the associations between microbiome 
SNPs and host health.

Here we present the first metagenome-wide association study 
(MWAS) framework to comprehensively detect SNPs in the human gut 
microbiome and associate them with host traits. Although previous 
studies have used the term MWAS to describe studies that associate 
microbiome species with host traits20, in this study, we use MWAS to 
refer to the association of individual bacterial SNPs with host traits, 
similarly to how GWAS refers to the association of individual genomic 
SNPs with various traits. We designed this framework based on com-
mon GWAS practices, with modifications to address the differences 
between human genetics and metagenomic-based studies. In the 
present study, we used this framework to investigate the associa-
tions between the human gut microbiome and host obesity and, spe-
cifically, to test whether individual bacterial SNPs are associated with 
host body mass index (BMI). To this end, we used a unique cohort 
of 7,190 healthy individuals from whom we obtained metagenomic 
samples. We demonstrate the importance of SNPs to the interac-
tions between the microbiome and host health by revealing 1,358 
associations between bacterial SNPs and host BMI, which represent 
40 independent associations.

Results
A framework for MWASs
We devised a framework for MWASs to systematically detect 
nucleotide-level intra-species variability in the microbiome and identify 
associations between individual bacterial SNPs and host phenotypes 
(Fig. 1a). We used samples from 7,190 healthy individuals from Israel 
that we collected in this study as part of our ongoing ‘10K Project’21. Our 
cohort is, thus, one of the largest single cohorts of shotgun metagen-
omic microbiome samples that are coupled with host phenotypes.

To detect SNPs, we compared metagenomic samples from dif-
ferent individuals. Using metagenomic samples rather than cultured 
isolates enabled the analysis of a large number of samples, which is 
essential for this study, and a wide taxonomic range. However, it relies 
on the alignment of short reads to reference genomes, which makes 
discriminating intra-species SNPs from inter-species variations more 
challenging. To restrict our analyses to variations within bacterial spe-
cies, we took several measures to ensure that we assigned reads to the 
correct species. First, we aligned the sequenced reads to an expanded 
high-quality reference set of species that was recently assembled by 
our group22. This genome set, which was built using thousands of gut 
microbiome samples from Israeli individuals, best represents the vari-
ety of bacterial species expected to exist in our cohort. As a first step, 
we used the Unique Relative Abundances (URA) algorithm23, which uses 
genomic sequences that are unique to single species in the reference set 
to determine which bacterial species exist in each microbiome sample. 
Finally, we mapped the sequenced reads of each sample and excluded 
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This is further supported by the Q–Q plot (Extended Data Fig. 4). We 
then clumped these results to remove correlated SNPs. The clumping 
procedure reduced the number of uncorrelated BMI-associated SNPs 
in all species to four SNPs at most (Fig. 3, in white), implying that, in 
some species, there were indeed redundant associations arising due 
to LD and population structure (Extended Data Fig. 5). In total, after the 
clumping procedure, we ended up with 40 uncorrelated SNPs associ-
ated with BMI (Supplementary Tables 2 and 3).

For the design of future MWAS studies, we used the estimated 
effect sizes of these 40 associations and calculated the statistical power 
of a similar MWAS analysis with various sample sizes (Methods). We 
found that using only 1,000 samples covering each SNP and without a 
prior hypothesis on specific SNPs, only one of the 40 associations had 
a 0.5 probability of being detected (Extended Data Fig. 6).

MWAS reveals associations independent of species-level 
analysis
A common approach to studying the human gut microbiome is asso-
ciating species presence or relative abundance with host phenotypes. 
We were interested in the added value of the MWAS framework when 
investigating the relation between microbiome and health. For that 
aim, we compared the MWAS results with the species associated with 
host BMI by relative abundance. We found BMI-associated SNPs in the 
genomes of 27 different bacterial species. For each SNP–BMI associa-
tion that we discovered, we investigated whether BMI is also associated 

with the relative abundance of the bacteria (Methods). In 44% (12/27; 
Fig. 4a and Supplementary Table 4) of cases in which a species has an 
SNP associated with BMI, the relative abundance of the species itself 
was not associated with the phenotype. Complementarily, 52% (21/40; 
Fig. 4b) of the BMI-associated SNPs that we discovered were in species 
that are not associated with BMI by their relative abundance. Thus, our 
SNP-level analysis identifies associations that exist at a higher level of 
resolution and often not in species relative abundance.

SNP–BMI associations replicate in an independent cohort
To assess the robustness and generalization of the above associations, 
we tested their replicability in samples from 8,204 individuals from the 
Netherlands (from the Dutch Microbiome Project cohort28). We tested 
all 40 SNPs, without filtering them for sample size or variability, which 
was, in some cases, lower in the second cohort. Notably, 17 of the 40 
associations replicated (42.5%, Bonferroni-corrected P < 0.05; Fig. 5 
and Supplementary Table 5) in this geographically and technically 
independent cohort. One additional SNP was significantly associated 
with BMI but in the opposite direction than in the Israeli cohort. We esti-
mated the required sample size to replicate the associations (Methods) 
and found that, in five of the 23 associations that did not replicate in 
the second cohort, the sample size was too small to achieve the desired 
statistical power. To test the statistical significance of these results, 
we also tested 40 SNPs chosen at random and repeated this experi-
ment 1,000 times. In no random set of 40 SNPs, we found in the Dutch 
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cohort as many associations with BMI (P < 0.001, mean: 0.23, maxi-
mum: 4, s.d.: 0.48; Extended Data Fig. 7), implying that, even though 
the cohorts have different age, sex and BMI distributions (Fig. 1b and 
Extended Data Fig. 8), as well as different genetic and environmental 
backgrounds, the associations that we discovered are not random and 
replicate significantly. Additionally, we tested whether SNPs reveal 

associations beyond those of species relative abundance. We found 
that, of the 14 species in which we replicated SNP–BMI associations in 
the second cohort, seven species (accounting for eight of the 17 repli-
cated associations; Supplementary Table 6) did not have species-level 
relative abundance associations with BMI, demonstrating, again, the 
additional information found at the SNP level.
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SNP–BMI associations highlight specific loci
To investigate the mechanisms underlying the SNP–BMI associations 
and to account for additional confounders, we conducted additional 
MWAS analyses for the 40 SNPs. We added diet, medications and exer-
cise covariates to the regression analysis and tested whether the SNP 
P value in the model still passes the significance threshold. Because 
we had only some features for every participant, we tested each fea-
ture group separately (Methods and Supplementary Table 8). When 
we added the diet data, one SNP stopped being significant. With the 
exercise features, we could test only 35 of the SNPs, of which one SNP 
stopped being significant. None of the SNPs stopped being significant 
with the addition of the medication data (Supplementary Tables 9–11). 
We concluded that diet and exercise may have confounded two of the 
SNP–BMI associations, possibly affecting both bacterial genetics and 
host obesity status independently. Most SNP–BMI associations could 
not be explained by diet, exercise or medications.

We next sought to characterize the functional context of 
BMI-associated SNPs. We reasoned that genomic regions in which 

variation is associated with host health traits might contain functions 
that are central to the interactions between the bacteria and the physio-
logy of the host. We annotated the reference genomes and compared 
SNP positions with predicted gene locations (Methods and Supple-
mentary Tables 2 and 3).

Half (20/40) of the BMI-associated SNPs that we found are in six 
species annotated as Faecalibacterium prausnitzii and three species 
annotated as other Faecalibacterium species. F. prausnitzii is known to 
associate with various host health conditions. Its abundance is nega-
tively correlated with host obesity29, and, in a Mendelian randomization 
analysis, it was shown to have a causal role in reduced trunk fat mass30.

The SNP whose association with BMI was the most statistically 
significant is a non-synonymous polymorphism in a Faecalibacterium 
prausnitzii_G (Rep_3066) genome, within a predicted gene suspectedly 
encoding a flavodoxin—a redox-active protein. In the clumping analysis, 
we found that this SNP correlates with 47 other BMI-associated SNPs 
(Supplementary Table 7), all located within an 8,825-bp region. We 
conducted a functional enrichment analysis and discovered that the 
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BMI-associated SNPs in this region are enriched with genes predicted 
to code for energy production and conversion function (P < 1 × 10−30; 
Methods and Fig. 6). It was suggested that a way in which different gut 
microbiome compositions affect the risk of obesity is through variation 
in the efficiency of extracting energy from food31. A possible explana-
tion for the associations between these SNPs, which reside in metabolic 
genes, and host BMI is that the SNPs affect the metabolic efficiency of 
the bacteria and consequently affect host BMI.

When there are multiple SNPs within a genome that are all cor-
related with the trait as well as with each other, we cannot directly 
deduce which genetic variation has led to the functional difference that 
underlies the association with the host. Some of the correlated SNPs 
may have no effect on the bacteria–BMI interaction and correlate with 
BMI only because the SNPs are correlated—due to ancestry or LD—with 
variations that affect this interaction. Of the 40 SNPs that passed the 
clumping process, 18 represent singleton associations that were not 
correlated with any other BMI-associated SNP in the genome (that is, 
independent associations; Extended Data Fig. 2). We assumed that 
these SNPs are more likely to point toward the functional differences 
that directly affect host–bacteria interactions.

One of these singleton SNPs is in the genome of Bilophila  
wadsworthia (Rep_2746). It is thought that part of the influence of diet 
on obesity and obesity-related metabolic disorders is mediated by the 
activation of the immune system and a persistent state of low-grade 
inflammation32. There is evidence showing that this effect is medi-
ated by microbiome lipopolysaccharide (LPS), a component of the 
outer membrane of Gram-negative bacteria and a potent activator of 
the immune system. For example, a study in mice showed that, after a 
high-fat diet (HFD), serum LPS levels increased and that continuously 
injecting mice with LPS promoted weight gain and insulin resistance33. 
Specifically, B. wadsworthia was shown to expand in the microbiomes 
of mice on an HFD, and, when mice on an HFD were colonized with 
this species, microbiome LPS gene expression and host inflammation 
markers increased34. Interestingly, the BMI-associated SNP that we 
discovered in B. wadsworthia genome was located in a gene coding for 
UDP-4-amino-4-deoxy-l-arabinose-oxoglutarate aminotransferase, an 
enzyme modifying an arabinose that is attached to lipid A. Lipid A is 
the most immunogenic component of LPS; its different modifications 
have great effect on the nature of the immune response and are adap-
tive to different environments35. Notably, this SNP was the one whose 

association with BMI lost its statistical significance with the addition of 
the diet covariates to the regression model. Taken together, we suggest 
that the genetic variation that we discovered interacts with the host 
diet and affects the levels or toxicity of LPS expressed by the bacteria 
and, consequently, may cause the host to gain weight.

Discussion
Although various bacterial species in the gut microbiome are known 
to associate with host health, the association of single-nucleotide 
variations with human health traits was not yet tested. In this work, we 
associated 12,686,191 bacterial SNPs with host BMI in a cohort of 7,190 
healthy individuals. We discovered 1,358 associations between indi-
vidual bacterial SNPs and host BMI, which represent 40 independent 
associations—considerably unconfounded by host diet, medications 
and physical activity and tested in an independent cohort. Although 
this study concentrated on BMI, both we and others can harness this 
versatile metagenomics-based framework for studying other traits, 
cohorts and body sites, to further the understanding of the associa-
tions between the microbiome and host health. We demonstrate that 
nucleotide-level intra-species diversity in the microbiome correlates 
with the diversity in human physiological states, highlighting the poten-
tial importance of incorporating this level of information, previously 
unaccounted for, in future studies of host–microbiome interactions.

We show the advantage of the MWAS framework in creating 
mechanistic hypotheses. Each of the associations that we found can 
be mapped to a specific bacterium, gene and even protein domain and 
can be further studied in its functional context. By contrast, SNP arrays 
used in most human GWASs provide only limited subsets of SNPs and 
may not identify causal SNPs. In this analogy, the MWAS framework 
is more similar to whole genome sequencing-based GWASs, which 
directly test all variable nucleotides and can point directly at causal loci. 
Our study highlights two associations related to energy metabolism 
and host inflammatory state that support leading hypotheses on the 
microbiome’s impact on host weight while also identifying genes with 
unknown function that call for further study and annotation.

We revealed 40 associations between bacterial SNPs and host BMI 
that may potentially improve future microbiome-based interventions. 
Some of the BMI-associated SNPs that we discovered may have a causal 
role. Alternatively, some of the phenotype-associated SNPs that we dis-
covered may be adaptive. Zhao et al.36 showed that gut bacteria evolve 
at the nucleotide level during a host’s lifetime, but they did not compare 
these changes with physiological or exogenous host factors. The SNPs 
that we found may reflect the effect of host health and lifestyle on the 
microbiome. The two options are not necessarily mutually exclusive. 
Boehme et al.37 showed that fecal microbiota transplantation from 
young to old mice reverses some of the immune and cognitive effects 
of aging. This implies that, although the aging process affects the gut 
microbiome, the microbiome, in turn, has a causal role in some of the 
phenotypic differences associated with aging. Similarly, the abundance 
of various genetic variants may result from host lifestyle, for example, 
as well as affect host health. Identifying the causal nature of these 
associations necessitates a subsequent SNP-based microbiota trans-
plantation study. This intricate task would require the isolation and 
cultivation of the specific strains, genetic manipulation to introduce 
individual variation and the development of an appropriate model 
system for a comprehensive exploration of the SNP impacts on both 
the bacteria and host. Such follow-up experimental work will also 
enable the validation of the independence of SNP associations with 
BMI from associations with bacterial relative abundance, which was, 
thus far, supported for all associations by using relative abundance as 
a covariate in the MWAS model and for a subset of associations by the 
lack of direct correlation between relative abundance and BMI.

Associations that result from causal SNPs, once validated, may be 
utilized for the development of therapeutics. Since the associations 
we found map to a specific genomic position, such treatments may 
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be based on administering the bacteria with the health-associated 
alleles, the enzyme which contains the health-associated residue, or 
the metabolic product of the enzyme variants. Some of the SNPs we 
found show a large phenotypic difference between individuals with the 
major or alternative alleles. For some SNPs, the average BMI difference 
between the allele groups was greater than 2 points—the equivalent of a 
5.8 kg difference for a 1.7 meters tall person. If causal, treatments based 
on the SNPs can potentially have large effect sizes. Adaptive SNPs can 
also be used to improve microbiome-based treatments. In addition to 
their contribution to our general understanding of host-microbiome 
interactions, variants that are adapted to certain health states may be 
the basis for more robust—and possibly, personalized—microbiome 
modifications.

We note that this is not an exhaustive set. BMI-associated SNPs 
may be absent from our results because we filtered out reads from 
genomic regions shared between species or for bacteria that were not 
prevalent enough to reach the 1,000 samples cutoff for inclusion or 
for the association to reach the metagenome-wide significance cutoff. 
Our results show the potential of the MWAS framework to shed light 
on the mechanisms underlying host–microbiome interactions, but 
the comprehensive interpretation of the MWAS results is still limited 
by our understanding of microbiome population structure. Although 
methods to control for population structure were developed in the field 
of human genetics, their translation into the metagenomic microbiome 
world is not straightforward: metagenotyping hinders the deduction 
of long-range linkage and haplotyping38, especially for low-abundance 
species and when using single-end sequencing; principal component 
analysis (PCA), which is often used in GWASs to account for popula-
tion structure, is also problematic in a metagenomic framework due 
to the high missingness in the data. Basing the study on cultured iso-
lates rather on metagenomic sequencing could have helped resolve 
the population structure but at the expense of sample size and taxo-
nomic range. We aimed for a systematic analysis of microbiome SNPs 
across species and, therefore, prioritized obtaining a large sample 
size by using metagenomic data and including both low-coverage 
and high-coverage species and samples. The existence of population 
structure and linked SNPs can lead to false discoveries due to correla-
tion among SNPs, population stratification, structural variations or 
pangenome variations. It may also lead to missed discoveries because 
testing many correlated SNPs independently and multiple-hypotheses 
adjustments impairs the statistical power in the study. In one species, 
we originally found 908 correlated BMI-associated SNPs. In this spe-
cies, the large number of correlated SNPs may indicate that there are 
separate strains that are associated with host BMI, perhaps through 

nucleotide variation but possibly due to other strain differences, such 
as gene content variations, which were not the focus of this study.

Because, in most species, we found fewer than a dozen 
BMI-associated SNPs, we assume that, in these species, the associa-
tions that we discovered were probably not confounded by population 
structure. Additionally, we adopted the GWAS clumping procedure 
to remove redundant associations and identify singleton SNPs whose 
associations with the phenotype are more likely direct. This further 
increased the MWAS potential to highlight specific loci of potential 
importance to host–microbiome interactions and separate those from 
correlated SNPs that result from population structure and LD. The 
clumping procedure revealed that some SNPs were correlated, which 
implies that we lost statistical power—the number of independent 
hypotheses that we tested in the study is smaller than the number that 
we corrected for. Although we likely set the Bonferroni thresholds too 
high for that reason, we nonetheless discovered numerous significant 
associations. Finally, although additional validation is needed, observ-
ing the correlation between SNPs and BMI in a second cohort of people 
from a different continent, which represent different host and bacterial 
ancestry, also reduces the likelihood of population stratification and 
other population structure biases. Future research can further improve 
the MWAS framework by developing more MWAS-appropriate methods 
to account for bacterial population structure.

In summary, we presented a framework to study the associations 
between single-nucleotide variations in the microbiome and host 
phenotypes and show that individual SNPs in the microbiome associate 
with host BMI. These associations can be mapped to specific loci, sug-
gesting specific genes that may stand at the center of host–microbiome 
associations for future studies and may pave the way to designing novel 
microbiome-based treatments.
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Methods
Cohort
We analyzed a cohort of 7,190 healthy Israeli individuals. Participants 
in this cohort included 3,816 (53.1%) women and 3,374 men who were 
recruited as part of an ongoing prospective study—‘the 10K Project’21.  
Ages ranged from 25 years to 75 years, and most were between  
40 years and 70 years (7,116/7,190, 99%). Exclusion criteria are detailed 
in Shilo et al.21 and include antibiotics usage in the 3 months before 
recruitment. A single sample from each participant was included in  
this observational study. Samples were collected between April 2019 
and March 2022.

The year of birth and the sex of the participants were self-reported. 
BMI was calculated based on height and weight that were measured on 
site. We handled outliers in the BMI measurements using the follow-
ing procedure: first, we found the fraction of the data that includes 
98% of the values within the smallest range; next, we calculated the 
mean and s.d. of BMI distribution, based on these 98% of the data; 
and then, we removed values that are more than 9 s.d. away from the 
mean and clipped values that are 5 s.d. away from the mean or farther. 
We obtained complete age, sex and BMI data for 7,056 of the 7,190 
participants and removed the remaining individuals from the analysis. 
Diet, medication and exercise habits data were also self-reported. Diet 
was self-recorded using a designated mobile app in the 14-d period 
around sampling.

All participants signed an informed consent form upon arrival 
to the research site. The 10K cohort study is conducted according 
to the principles of the Declaration of Helsinki and was approved by 
the institutional review board of the Weizmann Institute of Science 
(protocol no. 964-1).

Microbiome sample collection and processing
Microbiome sampling was done using an OMNIgene·GUT (OMR-200, 
DNA Genotek) stool collection kit, which has the advantage of maintain-
ing DNA integrity in typical ambient temperature fluctuations. Each 
participant was given a kit and was requested to collect a fecal sample 
at home. The collected samples were transferred at room temperature 
to our participant reception center at Weizmann Institute of Science, 
where they were documented and frozen at −20 °C immediately. Then, 
samples were transferred in a cooler to our research facilities where 
they were stored at −20 °C until DNA extraction was performed. Labora-
tory work was done in the Segal laboratory at the Weizmann Institute 
of Science.

Metagenomic DNA was purified using PowerMag Microbial DNA 
Isolation Kit (MO BIO Laboratories, 27200-4) optimized for the Tecan 
automated platform. Libraries for next-generation sequencing were 
prepared using NEBNext Ultra II DNA Library Prep Kit for Illumina 
(New England Biolabs, E7775) and sequenced on a NovaSeq sequenc-
ing platform (Illumina). Sequencing was performed with a 100-bp 
single-end reads kit and a depth of 10 million reads per sample, using  
Illumina unique dual sequencing indexes (IDT–Syntezza Bioscience).  
DNA purification, library preparation and sequencing were per-
formed in batches of 384 samples. A standard microbial community 
(ZymoBIOMICS Gut Microbiome Standard, D6331) was inserted into 
each batch for quality control. No batch corrections were performed.

We filtered metagenomic reads containing Illumina adapters and 
low-quality reads and trimmed low-quality read edges. We detected 
host DNA by mapping reads to the human genome using Bowtie 2  
(ref. 39) with inclusive parameters and removed those reads.

Metagenomic reads mapping
We mapped the processed reads to a reference set of genomes  
representing bacterial species from the human gut microbiome. The 
reference set that we used, as well as the procedures for its taxonomic 
annotation, gene prediction and gene annotation, are described in 
detail in Leviatan et al.22.

We mapped the metagenomic reads to the reference genomes 
twice: first to estimate the list of bacterial species present in each sam-
ple and their relative abundances and then to compare reads aligned 
to the same genomic position at the SNP stage.

To determine species relative abundance in samples, we used the 
URA algorithm23, which uses genomic sequences that are unique to 
single species in the reference set to determine which bacterial species 
exist in each microbiome sample. We clipped the relative abundance 
at a minimum of 0.0001 (that is, this is the smallest possible value of a 
species relative abundance in this framework).

For the SNPs stage, we assigned each metagenomic read to a posi-
tion within a bacterial genome using Bowtie2 (version 2.2.9, option 
‘–very-sensitive-local’)39. If Bowtie2 found multiple target genomes to 
which the read could map with the same score, we compared the list 
of potential targets with the list of species that we assumed (based on 
the previous step) exist in the sample. When a read could be assigned 
with the same likelihood to more than one species that existed in the 
sample, we excluded it from the analysis. We chose this approach 
for two reasons: on the one hand, excluding ambiguously mapped 
reads is important for not mistaking polymorphisms that mark the 
difference between different species with a similar genomic region as 
actual (intra-species) SNPs; on the other hand, considering only spe-
cies present in each sample as potential targets helped us retain more 
reads and increase the sample size.

Finding variable positions, calling the major allele and 
genotyping samples
The first step was to find the cohort-wide major of each genomic posi-
tion of each species in our samples. For each position within the refer-
ence genome, for each sample, we counted the number of reads that 
mapped to this position containing each of the four nucleotides (up 
to a limit of 255 reads per nucleotide per sample). Then, for each posi-
tion, we summed these four values over all of the samples that covered 
this genomic position to determine the cohort-wide major allele of 
that position as well as the second major allele. We note that this stage 
also included samples that are not included in this study (from other 
cohorts that we analyze in our group23,40), which may have affected our 
perception of the cohort-wide major allele.

Next, we genotyped the samples. For each sample and each 
genomic position, we computed the fraction of reads that contained 
the cohort-wide major allele—its major allele frequency.

Lastly, we detected the variable positions. We binarized each 
sample as either ‘major’ or ‘non-major’ (major allele frequency > 0.05 
or major allele frequency ≤ 0.05, respectively) and marked as ‘SNPs’ 
the positions in which the fraction of samples with mostly the major 
allele was at most 99% of the samples covering the positions, based on 
the common definition for SNP.

Statistics and reproducibility
No sample size calculations were done as part of the study design. 
Because this is the first study, to our knowledge, to associate micro-
biome SNPs with host BMI, no prior knowledge on the expected effect 
sizes exists, and, thus, a sample size calculation was not feasible. Sam-
ples included are all the samples that met the criteria described in the 
‘Cohort’ subsection.

Data analysis was done using Python 3.7.4, with packages numpy 
1.21.0, pandas 1.2.5, statsmodels 0.12.2 and scipy 1.7.0.

SNP–phenotype associations
For each SNP that we associated with BMI, we excluded samples with 
any missing value for one of the covariates or for the explained variable. 
We then verified that (1) there remained at least 1,000 samples; (2) the 
position is sufficiently variable—there are at least 1% and at least 50 
samples in which the dominant allele is the major allele and, similarly, 
at least 1% and 50 samples in which the dominant allele is different than 
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the major allele; and (3) the most common value of the explained vari-
able (that is, the most common BMI label among samples) is not more 
common than 95% of samples. We only analyzed SNPs that fulfilled all 
these criteria.

We tested the association between each SNP and BMI using a linear 
regression model with the microbial genotype (major allele frequency), 
species relative abundance (log10) of the species to which the SNP 
belongs, age and sex as covariates and the BMI value as the explained 
variable. Only samples with complete data were included in the analysis 
of each SNP.

For the linear regression, we used statsmodels.regression.linear_
model.OLS41. We performed Bonferroni’s adjustment for the statistical 
significance 0.05 cutoff: 0.05 / 12,686,191 = 3.94 × 10−9.

Clumping
We applied the clumping procedure to extract independent associa-
tions from the list of BMI-associated SNPs. For each species separately, 
we began the process with the list of SNPs whose associations with 
BMI passed the significance threshold (metagenome-wide Bonfer-
roni ≤ 0.05) and filtered it in an iterative procedure. In each step, we 
added to the final list the SNP with the smallest P value and removed 
from the analysis all SNPs that were correlated to it. In the next step, we 
added to the final list the SNP with the next-smallest P value (out of the 
SNPs that were not excluded in the previous step). This process removes 
from the list of BMI-associated SNPs those that are correlated with each 
other and keeps only one representative SNP from each correlated SNP 
group, based on its strongest association with BMI. To avoid including 
redundant associations in our final list of results, we chose a stringent 
threshold for correlation and excluded SNPs correlated with Spear-
man’s correlation coefficient equal to or higher than 0.3 (with P ≤ 0.05).

Power estimation
To estimate the power to discover the 40 BMI-associated SNPs using dif-
ferent sample sizes, we used statsmodels.stats.power.tt_solve_power41. 
We calculated the standardized effect size of each SNP based on the 
regression model in the discovery MWAS, dividing the SNP’s estimated 
coefficient by the s.d. of the coefficient and the squared root of the 
discovery sample size: standardized effect size = coef / (s.d.(coef) × sqrt
(N)). We set the alpha to 3.9 × 10−9 based on a cutoff of 0.05 and a Bonfer-
roni correction for 12,686,191 hypotheses. We repeated this calculation 
for varying sample sizes and set the power variable to ‘None’ for the 
algorithm to estimate it. It is important to note that ‘sample size’ in this 
case refers to the number of samples with reads covering the specific 
SNP, which is usually smaller than the total number of samples in a study 
and even smaller than the number of samples including the species.

We estimated the sample required sample size for the replication 
in a similar manner, setting the sample size to ‘None’, the power to 0.9 
and the alpha to 0.05 / 40 based on a cutoff of 0.05 and a Bonferroni 
correction for 40 hypotheses.

Associating phenotypes with species abundance
For each species in which we found SNPs significantly associated with 
BMI, we tested whether the relative abundance of the species also 
associates with this phenotype. We excluded samples for which the 
BMI value was missing and computed the P value of the Spearman’s 
correlation between the relative abundance of species and BMI (using 
scipy.stats.spearmanr42). We performed Bonferroni’s adjustment for 
multiple hypotheses by multiplying each P value by the total number 
of species tested and setting the significance threshold at 0.05.

Replication in a second cohort
We obtained the metagenomic samples from Gacesa et al.28 and pro-
cessed them using the same computational pipeline that we used for 
the discovery cohort. To use the same pipeline, we used only one of 
the paired-end reads (either forward or reverse) and truncated reads 

at 75 bp. We repeated the MWAS analysis for the 40 SNPs that were sig-
nificantly associated with BMI in the discovery cohort. We tested all 40 
SNPs, even if they did not meet the criteria set for SNPs in the discovery 
MWAS; we did not require a minimum sample size, variability in the 
SNP among tested samples or variability in the BMI. We performed 
Bonferroni’s adjustment for the statistical significance 0.05 cutoff: 
0.05 / 40 = 0.00125.

Replication randomization
To estimate the statistical significance of the replication rate of the 
associations in the second cohort, we tested how many significant asso-
ciations could be found in a random set of 40 SNPs. We repeated this 
experiment 1,000 times, each time choosing 40 of the SNPs that were 
tested in the discovery MWAS for an MWAS analysis with the replication 
cohort. We used the same parameters as described in the ‘Replication 
in a second cohort’ subsection and corrected for 40 hypotheses in each 
repetition. In 137 of the 1,000 repetitions, one or two SNPs could not 
be analyzed. We then compared the number of statistically significant 
associations found in each random set of 40 SNPs with the number of 
associations found when testing the 40 SNPs that were associated with 
BMI in the discovery cohort. In none of the 1,000 repetitions did we find 
as many statistically significant associations, and, thus, we estimated 
the P value for the replication to be less than 0.001.

Controlling for additional confounders
To analyze the potentially confounding effect of host diet, exer-
cise and medications on the SNP–BMI associations, we repeated 
the MWAS analysis of the 40 post-clumping BMI-associated SNPs 
with additional covariates. We only included medication catego-
ries reported by at least 50 participants. Diet covariates of each 
participant were generated by dividing the logged food items into 
categories, calculating the daily fraction of caloric intake attributed 
to each food category and averaging these fractions over days with at 
least 500 logged calories. Diet, exercise and medication covariates 
are listed in Supplementary Table 7.

Because our records for these self-reported features are partial, 
and because, for each SNP, we only analyzed samples with complete 
covariate information, the addition of each covariate reduced the sam-
ple size for the MWAS. Therefore, we tested each of the three categories 
separately. For each of the 40 SNPs, after reducing the set of samples 
to those with complete information on the additional covariates, we 
conducted a second regression analysis with the original set of covari-
ates: the bacterial genotype and relative abundance, age and sex. Only 
if the SNP passed the statistical significance cutoff again, we conducted 
a third regression analysis, adding the extra covariates of the analyzed 
category. If the SNP–BMI association met the significance cutoff with 
the reduced set of samples but was not significant after adding the extra 
covariates, we deduced that the association might be confounded by 
the lifestyle variables of that category.

Annotating SNPs
To functionally annotate each SNP, we compared its genomic position 
with the location of predicted genes along the reference genome. 
Accordingly, SNPs were annotated as either within a gene or in an inter-
genic region. In some contigs, there were no predicted genes. In those, 
we marked the function of the SNPs as unknown. We further classified 
SNPs that were within predicted genes as either within protein-coding 
genes or within non-protein-coding genes (mainly RNA genes, such as 
tRNA and rRNA).

To determine the synonymy of SNPs within protein-coding genes, 
we compared its surrounding codon with the SNP’s major allele and 
with its second major allele. First, we compared the location of the SNP 
with the predicted open reading frame (ORF) to compute the location 
of the SNP’s surrounding codon. Then, we extracted the cohort-wide 
major allele of the three nucleotides within its surrounding codon. 
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Finally, we compared the amino acid translation of this codon with the 
translation of the codon when the SNP’s allele is changed to its second 
major allele. If the two codons translated to different amino acids, we 
classified the SNP as non-synonymous.

Because we designed our MWAS framework to test the effect of 
each individual SNP independently, we did not test whether more than 
one SNP existed within a codon. In these cases, our synonymy clas-
sification may be wrong. Additionally, we note that, in samples where 
the allele is neither the cohort-wide major nor its second major, the 
effect of the genetic variation on the coded protein may be different 
than we predicted.

Functional enrichment
To test the potential functional enrichment of the 48 correlated 
BMI-associated SNPs in Rep_3066, we compared the fraction of SNPs 
in genes annotated with the COG category ‘C: Energy production and 
conversion’ out of all tested Rep_3066 SNPs, with the fraction of this 
COG category among the 48 SNPs. We used a hypergeometric distribu-
tion (scipy.stats.hypergeom42) to estimate the likelihood of obtaining 
these many ‘C’ category genes among the BMI-associated SNPs with a 
random choice of Rep_3066 SNPs.

Visualization
For visualization, we used Matplotlib43. To minimize the overlap 
between gene tags in Manhattan and volcano plots, we used adjust-
Text (https://github.com/Phlya/adjustText; ref. 44).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data in this paper are part of the Human Phenotype Project. The raw 
metagenomic data and basic phenotypes (age, sex and BMI) used in 
this study are available at the European Genome-phenome Archive 
(https://ega-archive.org/) under accession EGAS00001007204. The 
other data are accessible to researchers from universities and other 
research institutions at https://humanphenotypeproject.org/home.

Code availability
Analysis source code is available at https://github.com/LironZa/MWAS.
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Extended Data Fig. 1 | SNPs overview. (a) Distribution of the 12,686,191 detected SNPs across 348 species. (b) Number of samples covering different SNPs.
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Extended Data Fig. 2 | Volcano plot. Volcano plot shows for each SNP the 
difference between the average BMI in individuals with mostly the alternative 
allele (major allele frequency ≤ 0.5) and the average BMI in individuals with 
mostly the major allele (major allele frequency > 0.5; x-axis); and its p-value 

(y-axis). Red annotations show gene symbols of the protein-coding SNPs left after 
the clumping stage (if a gene symbol exists). X-axis was truncated to the range of 
statistically significant associations ±10%.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | BMI differences. For each of the 40 BMI-associated 
SNPs that remained after the clumping stage, boxplots (center, median; box, 
interquartile range; whiskers, 5th and 95th percentiles; notches, 95% confidence 
interval around the median based on 1,000 times bootstrap) compare host BMI 
distribution of individuals with no bacteria of this species (left box; Methods), 

hosts of bacteria with the major allele (middle box; major allele frequency ≥ 0.99) 
and hosts of bacteria with the minor allele (right box; major allele frequency ≤ 
0.01). The grey scale indicates the difference between medians. Groups were 
compared in a two-sided Mann-Whitney test, and p-values were Bonferroni 
corrected for 120 hypotheses (40 SNPs, 3 comparisons per SNP).
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Extended Data Fig. 4 | Quantile-quantile (Q-Q) plots. Expected (uniform 
distribution between 1/[the total number of tested SNPs] and 1) p-values 
compared to the SNPs p-values estimated in the MWAS analysis. (a) All tested 
SNPs. Red dots are the 40 BMI-associated SNPs remaining after the clumping 

procedure. (b) Each species estimated and plotted separately using a random 
color. Straight lines connect adjacent SNP dots to increase readability. (c) Species 
with more than 13 BMI-associated SNPs. Straight lines connect adjacent SNP dots 
to increase readability.
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Extended Data Fig. 5 | Number of correlated SNPs in each linkage group. Histograms show the number of correlated SNPs that were found in the clumping stage in 
each linkage group. The total number of groups is 40, which is the final number of SNPs that remained post the clumping procedure. (a) Full range of group sizes.  
(b) Groups with 1 to 100 SNPs.
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Extended Data Fig. 6 | Power analysis. Boxplots (center, median; box, 
interquartile range; whiskers, 1.5 * interquartile range or the most extreme data 
point) show the calculated power for associating the 40 SNPs with BMI, given the 

effect size observed in our cohort and various effective sample sizes (N). Alpha 
was set to 3.9 × 10−9 based on a cutoff of 0.05 and a Bonferroni correction for 
12,686,191 hypotheses.
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Extended Data Fig. 7 | Random replication control. For 1000 random choices 
of 40 SNPs from the discovery analysis, showing how many passed the 0.05 
Bonferroni adjusted cutoff for association with BMI in the replication cohort. For 

reference, the red dotted line shows the number of SNPs that passed the cutoff 
when the 40 SNPs that were associated with BMI in the discovery cohort were 
tested — 17.
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Extended Data Fig. 8 | Replication cohort characteristics. Age, sex, and BMI distribution of the 8,204 study participants.
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